An Ensemble Method for Non-Intrusive Load Monitoring (NILM) Applied to Deep Learning Approaches

Author:

Moreno Silvia12ORCID,Teran Hector3,Villarreal Reynaldo1,Vega-Sampayo Yolanda1,Paez Jheifer1ORCID,Ochoa Carlos3,Espejo Carlos Alejandro4,Chamorro-Solano Sindy5ORCID,Montoya Camilo6

Affiliation:

1. Centro de Investigación, Desarrollo Tecnológico e Innovación en Inteligencia Artificial y Robótica AudacIA, Universidad Simón Bolívar, Barranquilla 080005, Colombia

2. Systems Engineering Department, Universidad del Norte, Barranquilla 081007, Colombia

3. Faculty of Engineering, Universidad Simón Bolívar, Barranquilla 080005, Colombia

4. Centro de Crecimiento Empresarial e Innovación Macondolab, Universidad Simón Bolívar, Barranquilla 080005, Colombia

5. Centro de Investigación e Innovación en Biodiversidad y Cambio Climático Adaptia, Universidad Simón Bolívar, Barranquilla 080005, Colombia

6. Solenium S.A.S., Medellin 050031, Colombia

Abstract

Climate change, primarily driven by human activities such as burning fossil fuels, is causing significant long-term changes in temperature and weather patterns. To mitigate these impacts, there is an increased focus on renewable energy sources. However, optimizing power consumption through effective usage control and waste recycling also offers substantial potential for reducing energy demands. This study explores non-intrusive load monitoring (NILM) to estimate disaggregated energy consumption from a single household meter, leveraging advancements in deep learning such as convolutional neural networks. The study uses the UK-DALE dataset to extract and plot power consumption data from the main meter and identify five household appliances. Convolutional neural networks (CNNs) are trained with transfer learning using VGG16 and MobileNet. The models are validated, tested on split datasets, and combined using ensemble methods for improved performance. A new voting scheme for ensembles is proposed, named weighted average confidence voting (WeCV), and it is used to create combinations of the best 3 and 5 models and applied to NILM. The base models achieve up to 97% accuracy. The ensemble methods applying WeCV show an increased accuracy of 98%, surpassing previous state-of-the-art results. This study shows that CNNs with transfer learning effectively disaggregate household energy use, achieving high accuracy. Ensemble methods further improve performance, offering a promising approach for optimizing energy use and mitigating climate change.

Funder

Colombian Ministry of Science, MINCIENCIAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3