Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application

Author:

La Salvia MarcoORCID,Torti EmanueleORCID,Leon RaquelORCID,Fabelo HimarORCID,Ortega SamuelORCID,Martinez-Vega BeatrizORCID,Callico Gustavo M.ORCID,Leporati Francesco

Abstract

In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers.

Funder

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

Spanish Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. A review of medical artificial intelligence

2. A survey on deep learning in medicine: Why, how and when?

3. Synthetic data in machine learning for medicine and healthcare

4. DermGAN: Synthetic Generation of Clinical Skin Images with Pathology;Ghorbani;Mach. Learn. Res.,2020

5. High-Resolution Medical Image Synthesis Using Progressively Grown Generative Adversarial Networks;Beers;arXiv,2018

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3