Cadence Detection in Road Cycling Using Saddle Tube Motion and Machine Learning

Author:

Hollaus BernhardORCID,Volmer Jasper C.,Fleischmann ThomasORCID

Abstract

Most commercial cadence-measurement systems in road cycling are strictly limited in their function to the measurement of cadence. Other relevant signals, such as roll angle, inclination or a round kick evaluation, cannot be measured with them. This work proposes an alternative cadence-measurement system with less of the mentioned restrictions, without the need for distinct cadence-measurement apparatus attached to the pedal and shaft of the road bicycle. The proposed design applies an inertial measurement unit (IMU) to the seating pole of the bike. In an experiment, the motion data were gathered. A total of four different road cyclists participated in this study to collect different datasets for neural network training and evaluation. In total, over 10 h of road cycling data were recorded and used to train the neural network. The network’s aim was to detect each revolution of the crank within the data. The evaluation of the data has shown that using pure accelerometer data from all three axes led to the best result in combination with the proposed network architecture. A working proof of concept was achieved with an accuracy of approximately 95% on test data. As the proof of concept can also be seen as a new method for measuring cadence, the method was compared with the ground truth. Comparing the ground truth and the predicted cadence, it can be stated that for the relevant range of 50 rpm and above, the prediction over-predicts the cadence with approximately 0.9 rpm with a standard deviation of 2.05 rpm. The results indicate that the proposed design is fully functioning and can be seen as an alternative method to detect the cadence of a road cyclist.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3