A Study on Prediction Model of Gully Volume Based on Morphological Features in the JINSHA Dry-Hot Valley Region of Southwest China

Author:

Yang Dan,Mu Kai,Yang Hui,Luo Mingliang,Lv Wei,Zhang Bin,Liu Hui,Wang Zhicheng

Abstract

Gully erosion is well-developed in the Jinsha dry-hot valley region, which has caused serious soil losses. Gully volume is regarded as an effective indicator that can reflect the development intensity of gully erosion, and the evolutionary processes of gullies can be predicted based on the dynamic variation in gully volume. Establishing an effective prediction model of gully volume is essential to determine gully volume accurately and conveniently. Therefore, in this work, an empirical prediction model of gully volume was constructed and verified based on detailed morphological features acquired by elaborate field investigations and measurements in 134 gullies. The results showed the mean value of gully length, width, depth, cross-section area, volume, and vertical gradient decreased with the weakness of the activity degree of the gully, although the decrease in processes of these parameters had some differences. Moreover, a series of empirical prediction models of gully volume was constructed, and gully length was demonstrated to be a better predictor than other morphological features. Lastly, the effectiveness test showed the model of V = aL^b was the most effective in predicting gully volume among the different models established in this study. Our results provide a useful approach to predict gully volume in dry-hot valley regions.

Funder

National Natural Science Foundation of China

Science &Technology Department of Sichuan Province Key project of Applied Basic Research

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3