Dark Matter as Variations in the Electromagnetic Zero-Point Field Induced by Baryonic Matter

Author:

Knoll Yehonatan

Abstract

Cold dark-matter, as a solution to the so-called dark-matter problem, suffers from a major internal conflict: In order to dodge direct detection for so long, it must have an unobservably small (non gravitational) interaction with mundane matter, and yet it manages to ‘conspire’ with it such that, in single galaxies, its distribution can be inferred from that of mundane matter via the MOND phenomenology. This conflict is avoided if the missing, transparent component of the energy-momentum tensor is due to variations in some electromagnetic ‘zero point field’ (ZPF) which is sourced by mundane matter and contains both its advanced and retarded fields. The existence of a ZPF thus modulated by mundane matter, follows from a proper solution to the self-force problem of classical electrodynamics (CED), recently proposed by the author, which renders CED compatible with the statistical predictions of QM. The possibility that ‘dark matter’ is yet another, hitherto ignored facet of good-old classical electrodynamics, therefore seems no less plausible than it being a highly exotic and conspirative new form of matter. Tests for deciding between the two are proposed.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference13 articles.

1. Quantum mechanics as a solution to the classical self-force problem;Knoll;arXiv,2017

2. Do gravitational fields play an essential role in the structure of the elementary particles of matter?;Einstein;Sitzungsberichte Der Preuss. Akad. Der Wiss.,1919

3. Classical Electrodynamics;Jackson,1999

4. Scale covariant physics: a ‘quantum deformation’ of classical electrodynamics

5. Quantum Mechanics as a Statistical Description of Classical Electrodynamics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3