Abstract
Seventeen singlet excited states of ethylene have been calculated via time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the geometries of 11 excited states were optimized successfully. The local vibrational mode theory was employed to examine the intrinsic C=C/C–H bond strengths and their change upon excitation. The natural transition orbital (NTO) analysis was used to further analyze the C=C/C–H bond strength change in excited states versus the ground state. For the first time, three excited states including πy′ → 3s, πy′ → 3py and πy′ → 3pz were identified with stronger C=C ethylene double bonds than in the ground state.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献