Predicting Business Innovation Intention Based on Perceived Barriers: A Machine Learning Approach

Author:

Rojas-Córdova CarolinaORCID,Heredia-Rojas BorisORCID,Ramírez-Correa PatricioORCID

Abstract

In the Industry 4.0 scenario, innovation emerges as a clear driver for the economic development of societies. This effect is particularly true for the least developed countries. Nevertheless, there is a lack of studies that analyze this phenomenon in these nations. In this context, this study aims to examine the impact of perceived barriers to innovation to predict companies′ innovative intentions in an emerging economy. This study is a preliminary effort to use data mining and symmetry-based learning concepts, especially classification, to assist the identification of strategies to incentivize intention to innovate in companies. Using the decision tree classification technique, we analyzed a sample of Chilean companies (N = 5876). The sample was divided into large enterprises (LEs) and small and medium enterprises (SMEs). In the group of large companies, the barriers that most impact the intention to innovate are innovation cost, lack of demand innovations, and lack of qualified personnel. Alternatively, in the group of small-medium companies, the barriers that most impact the intention to innovate are lack of own funds, lack of demand innovations, and lack of information about technology. These results show how the perceptions of barriers are significant to predict the intentions of innovation in Chilean companies. Furthermore, the perceptions of these barriers are contingent on the organizational sizes. These findings contribute to understanding the effect of contingencies on innovative intention in an emerging economy.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Industry 4.0 and the current status as well as future prospects on logistics

2. Service innovations enabled by the “internet of things”

3. Industry 4.0

4. Comparative analysis of formation of industry 4.0 in developed and developing countries;Bogoviz;Stud. Syst. Decis. Control,2019

5. Causal connections of formation of industry 4.0 from the positions of the global economy;Sozinova,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3