An Efficient Intrusion Detection Method Based on LightGBM and Autoencoder

Author:

Tang Chaofei,Luktarhan Nurbol,Zhao Yuxin

Abstract

Due to the insidious characteristics of network intrusion behaviors, developing an efficient intrusion detection system is still a big challenge, especially in the era of big data where the number of traffic and the dimension of each traffic feature are high. Because of the shortcomings of traditional common machine learning algorithms in network intrusion detection, such as insufficient accuracy, a network intrusion detection system based on LightGBM and autoencoder (AE) is proposed. The LightGBM-AE model proposed in this paper includes three steps: data preprocessing, feature selection, and classification. The LightGBM-AE model adopts the LightGBM algorithm for feature selection, and then uses an autoencoder for training and detection. When a set of data containing network intrusion behaviors are inputted into an autoencoder, there is a large reconstruction error between the original input data and the reconstructed data obtained by the autoencoder, which provides a basis for intrusion detection. According to the reconstruction error, an appropriate threshold is set to distinguish symmetrically between normal behavior and attack behavior. The experiment is carried out on the NSL-KDD dataset and implemented using Pytorch. In addition to autoencoder, variational autoencoder (VAE) and denoising autoencoder (DAE) are also used for intrusion detection and are compared with existing machine learning algorithms such as Decision Tree, Random Forest, KNN, GBDT, and XGBoost. The evaluation is carried out through classification evaluation indexes such as accuracy, precision, recall, F1-score. The experimental results show that the method can efficiently separate the attack behavior from normal behavior according to the reconstruction error. Compared with other methods, the effectiveness and superiority of this method are verified.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3