US Dollar/Turkish Lira Exchange Rate Forecasting Model Based on Deep Learning Methodologies and Time Series Analysis

Author:

Yasar Harun,Kilimci Zeynep HilalORCID

Abstract

Exchange rate forecasting has been an important topic for investors, researchers, and analysts. In this study, financial sentiment analysis (FSA) and time series analysis (TSA) are proposed to form a predicting model for US Dollar/Turkish Lira exchange rate. For this purpose, the proposed hybrid model is constructed in three stages: obtaining and modeling text data for FSA, obtaining and modeling numerical data for TSA, and blending two models like a symmetry. To our knowledge, this is the first study in the literature that uses social media platforms as a source for FSA and blends them with TSA methods. To perform FSA, word embedding methods Word2vec, GloVe, fastText, and deep learning models such as CNN, RNN, LSTM are used. To the best of our knowledge, this study is the first attempt in terms of performing the FSA by using the combinations of deep learning models with word embedding methods for both Turkish and English texts. For TSA, simple exponential smoothing, Holt–Winters, Holt’s linear, and ARIMA models are employed. Finally, with the usage of the proposed model, any user who wants to make a US Dollar/Turkish Lira exchange rate forecast will be able to make a more consistent and strong exchange rate forecast.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3