Pattern Recognition of Different Window Size Control Charts Based on Convolutional Neural Network and Information Fusion

Author:

Zan TaoORCID,Su ZifengORCID,Liu ZhihaoORCID,Chen Deyin,Wang Min,Gao XiangshengORCID

Abstract

Control charts are an important tool for statistical process control (SPC). SPC has the characteristics of fluctuation and asymmetry in the symmetrical coordinate system. It is a graph with control limits used to analyze and judge whether the process is in a stable state. Its fast and accurate identification is of great significance to the actual production. The existing control chart pattern recognition (CCPR) method can only recognize a control chart with fixed window size, but cannot adjust with different window sizes according to the actual production needs. In order to solve these problems and improve the quality management effect in the manufacturing process, a new CCPR method is proposed based on convolutional neural network (CNN) and information fusion. After undergoing feature learning, CNN is used to extract the best feature set from the control chart, while at the same time, expert features (including one shape features and four statistical features) are fused to complete the CCPR. In this paper, the control charts of 10 different window sizes are generated by the Monte Carlo simulation method, and various data patterns are drawn into images, then the CCPR model is set up. Finally, simulation experiments and a real example are addressed to validate its feasibility and effectiveness. The results of simulation experiments demonstrate that the recognition method based on CNN can be used for pattern recognition for different window size control charts, and its recognition accuracy is higher than the traditional ones. In addition, the recognition method based on information fusion performs much better. The result of a real example shows that the method has potential application in solving the pattern recognition problem of control charts with different window sizes.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diagnostics of unmanned aerial vehicle with recurrence based approach of piezo-element voltage signals;Scientific Reports;2024-07-26

2. Ensemble Classifier for Recognition of Small Variation in X-Bar Control Chart Patterns;Machines;2023-01-14

3. Research on Pattern Recognition Performance of Control Chart Based on Deep Learning;2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT);2022-07

4. Classification of Scatter Plot Images Using Deep Learning;Deu Muhendislik Fakultesi Fen ve Muhendislik;2022-05-16

5. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model;Stochastic Environmental Research and Risk Assessment;2022-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3