On the Loss of Learning Capability Inside an Arrangement of Neural Networks: The Bottleneck Effect in Black-Holes

Author:

Arraut Ivan,Diaz Diana

Abstract

We analyze the loss of information and the loss of learning capability inside an arrangement of neural networks. Our method is based on the formulation of the Bogoliubov transformations in order to connect the information between different points of the arrangement. Similar methods translated to the physics of black-holes, reproduce the Hawking radiation effect. From this perspective we can conclude that the black-holes are objects reproducing naturally the bottleneck effect, which is fundamental in neural networks in order to perceive the useful information, eliminating in this way the noise.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

1. A logical calculus of the ideas immanent in nervous activity

2. The Organization of Behavior;Hebb,1949

3. Simulation of self-organizing systems by digital computer

4. Neural Networks and Deep Learning http://neuralnetworksanddeeplearning.com/

5. Gradient Descent based Weight Learning for Grouping Problems: Application on Graph Coloring and Equitable Graph Coloring;Goudet;arXiv,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3