Design of a Predictive Model of Rock Breakage by Blasting Using Artificial Neural Networks

Author:

Rosales-Huamani Jimmy AurelioORCID,Perez-Alvarado Roberth SaenzORCID,Rojas-Villanueva UweORCID,Castillo-Sequera Jose LuisORCID

Abstract

Over the years, various models have been developed in the stages of the mining process that have allowed predicting and enhancing results, but it is the breakage, the variable that connects all the activities of the mining process from the point of view of costs (drilling, blasting, loading, hauling, crushing and grinding). To improve this process, we have designed and developed a computational model based on an Artificial Neural Network (ANN), the same that was built using the most representative variables such as the properties of explosives, the geomechanical parameters of the rock mass, and the design parameters of drill-blasting. For the training and validation of the model, we have taken the data from a copper mine as reference located in the north of Chile. The ANN architecture was of the supervised type containing: an input layer, a hidden layer with 13 neurons and an output layer that includes the sigmoid activation function with symmetrical properties for optimal model convergence. The ANN model was fed-back in its learning with training data until it becomes perfected, and due to the experimental results obtained, it is a valid prediction option that can be used in future blasting of ore deposits with similar characteristics using the same representative variables considered. Therefore, it constitutes a valid alternative for predicting rock breakage, given that it has been experimentally validated, with moderately reliable results, providing higher correlation coefficients than traditional models used, and with the additional advantage that an ANN model provides, due to its ability to learn and recognize collected data patterns. In this way, using this computer model we can obtain satisfactory results that allow us to predict breakage in similar scenarios, providing an alternative for evaluating the costs that this entails as a contribution to the work.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3