The Integration of ANN and FEA and Its Application to Property Prediction of Dual-Performance Turbine Disks

Author:

Li Yanqing1,Zhang Ziming2,Cheng Junyi13,Liu Zhaofeng13,Yin Chao1,Wang Chao14ORCID,Guo Jianzheng3ORCID

Affiliation:

1. Wedge Central South Research Institute Co., Ltd., Shenzhen 518045, China

2. Department of Mathematics, The University of British Columbia, Vancouver, BC V6T1Z4, Canada

3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

4. Shenzhen Wedge Aviation Technology Co., Ltd., Shenzhen 518000, China

Abstract

Regulating the microstructure of powder metallurgy (P/M) nickel-based superalloys to achieve superior mechanical properties through heat treatment is a prevalent method in turbine disk design. However, in the case of dual-performance turbine disks, the complexity and non-uniformity of the heat treatment process present substantial challenges. The prediction of yield strength is typically derived from the analysis of microstructures under various heat treatment regimes. This method is time-consuming, expensive, and the accuracy often depends on the precision of microstructural characterization. This study successfully employed a coupled method of Artificial Neural Network (ANN) and finite element analysis (FEA) to reveal the relationship between the heat treatment process and yield strength. The coupled method accurately predicted the location specified and temperature-dependent yield strength based on the heat treatment parameters such as holding temperatures and cooling rates. The root mean square error (RMSE) and mean absolute percentage deviation (MAPD) for the training set are 50.37 and 3.77, respectively, while, for the testing set, they are 50.13 and 3.71, respectively. Furthermore, an integrated model of FEA and ANN is established using a Abaqus user subroutine. The integrated model can predict the yield strength based on temperature calculation results and automatically update material properties of the FEA model during the loading process simulation. This allows for an accurate calculation of the stress–strain state of the turbine disk during actual working conditions, aiding in locating areas of stress concentration, plastic deformation, and other critical regions, and provides a novel reliable reference for the rapid design of the turbine disk.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3