Optimized Adsorption–Catalytic Conversion for Lithium Polysulfides by Constructing Bimetallic Compounds for Lithium–Sulfur Batteries

Author:

Chen Liping1,Wang Runhua1,Li Nan1,Bai Yang1,Zhou Yimo1,Wang Juan1

Affiliation:

1. Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Although lithium–sulfur batteries possess the advantage of high theoretical specific capacity, the inevitable shuttle effect of lithium polysulfides is still a difficult problem restricting its application. The design of highly active catalysts to promote the redox reaction during charge–discharge and thus reduce the existence time of lithium polysulfides in the electrolyte is the mainstream solution at present. In particular, bimetallic compounds can provide more active sites and exhibit better catalytic properties than single-component metal compounds by regulating the electronic structure of the catalysts. In this work, bimetallic compounds-nitrogen-doped carbon nanotubes (NiCo)Se2-NCNT and (CuCo)Se2-NCNT are designed by introducing Ni and Cu into CoSe2, respectively. The (CuCo)Se2-NCNT delivers an optimized adsorption–catalytic conversion for lithium polysulfide, benefitting from adjusted electron structure with downshifted d-band center and increased electron fill number of Co in (CuCo)Se2 compared with that of (NiCo)Se2. This endows (CuCo)Se2 moderate adsorption strength for lithium polysulfides and better catalytic properties for their conversion. As a result, the lithium–sulfur batteries with (CuCo)Se2-NCNT achieve a high specific capacity of 1051.06 mAh g−1 at 1C and an enhanced rate property with a specific capacity of 838.27 mAh g−1 at 4C. The work provides meaningful insights into the design of bimetallic compounds as catalysts for lithium–sulfur batteries.

Funder

National Natural Science Foundation of China

Shaanxi Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3