Odors Adsorption in Zeolites Including Natural Clinoptilolite: Theoretical and Experimental Studies

Author:

Czekaj Izabela12ORCID,Sobuś Natalia12ORCID

Affiliation:

1. Zeocomplex, Płk. Stanisława Dąbka 17, 30-832 Kraków, Poland

2. Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland

Abstract

This publication presents the results of combined theoretical and experimental research for the potential use of natural clinoptilolite zeolite (CLI) as an odor-adsorbing material. In this study of adsorption capacity, CLI of various granulation was used and its modifications were made by ion exchange using Sn and Fe metals to check whether the presence of metals as potential active centers does not lead to catalytic processes and may lead to enhanced absorption of odorous substances through their adsorption on the created metallic forms. Additionally, in order to increase the specific surface area, modifications were made in the form of hierarchization in an acidic environment using hydrochloric acid to also create the hydrogen form of zeolite and thus also check how the material behaves as an adsorbent. To compare the effect of CLI as a sorption material, synthetic zeolite MFI was also used—as a sodium form and after the introduction of metals (Sn, Fe). The above materials were subjected to adsorption measurements using odorous substances (including acetaldehyde, dimethylamine, pentanoic acid and octanoic acid). Based on the measurements performed, the most advantageous material that traps odorants is a natural material—clinoptilolite. Depending on the faction, its ability varies for different compounds. In the case of acetaldehyde, an effective material is clinoptilolite with a grain size of up to 2 mm. In the case of carboxylic acids, it is material after hierarchization with a fraction of 3–4 mm. In the case of theoretical calculations, information was obtained to show that metallic centers are more stable above oxygen, which is associated with the skeletal aluminum in clinoptilolite.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3