Examination of Beam Theories for Buckling and Free Vibration of Functionally Graded Porous Beams

Author:

Wu Shuaishuai1,Li Yilin1,Bao Yumei2,Zhu Jun1ORCID,Wu Helong1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. College of Mechanical Engineering, Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China

Abstract

This paper examines the accuracy and effectiveness of various beam theories in predicting the critical buckling loads and fundamental frequencies of functionally graded porous (FGP) beams whose material properties change continuously across the thickness. The beam theories considered are classical beam theory (CBT), first-order shear deformation beam theory (FSDBT), third-order shear deformation beam theory (TSDBT), and the broken-line hypothesis-based shear deformation beam theory (BSDBT). Governing equations for those beam theories are formulated by using the Hamilton’s principle and are then solved by means of the generalised differential quadrature method. Finite element simulation solutions are provided as reference results to assess the predictions of those beam theories. Comprehensive numerical results are presented to evaluate the influences of the porosity distribution and coefficient, slenderness ratio, and boundary condition on the difference between theoretical predictions and simulation results. It is found that the differences significantly increase as the porosity coefficient rises, and this effect becomes more noticeable for the rigid beam with a smaller slenderness ratio. Nonetheless, the results produced by the BSDBT are always the closest to simulation ones. The findings in this paper will contribute to the establishment of more refined theories for the mechanical analysis of FGP structures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3