Energy-Efficient Time Synchronization Based on Nonlinear Clock Skew Tracking for Underwater Acoustic Networks

Author:

Liu Di,Zhu Min,Li DongORCID,Fang Xiaofang,Wu Yanbo

Abstract

Time synchronization plays an important role in the scheduling and position technologies of sensor nodes in underwater acoustic networks (UANs). The time synchronization (TS) algorithms face challenges such as high requirements of energy efficiency, the estimation accuracy of the time-varying clock skew and the suppression of the impulsive noise. To achieve accurate time synchronization for UANs, an energy-efficient TS method based on nonlinear clock skew tracking (NCST) is proposed. First, based on the sea trial temperature data and the crystal oscillators’ temperature–frequency characteristics, a nonlinear model is established to characterize the dynamic of clock skews. Second, a single-way communication scheme based on a receiver-only (RO) paradigm is used in the NCST-TS to save limited energy. Meanwhile, impulsive noises are considered during the communication process and the Gaussian mixture model (GMM) is employed to fit receiving timestamp errors caused by non-Gaussian noise. To combat the nonlinear and non-Gaussian problem, the particle filter (PF)-based algorithm is used to track the time-varying clock state and an accurate posterior probability density function under the GMM error model is also given in PF. The simulation results show that under the GMM error model, the accumulative Root Mean Square Errors (RMSE) of NCST-TS can be reduced from 10−4 s to 10−5 s compared with existing protocols. It also outperforms the other TS algorithms in the aspect of energy efficiency.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program (A) of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3