Visible-Image-Assisted Nonuniformity Correction of Infrared Images Using the GAN with SEBlock

Author:

Mou Xingang1,Zhu Tailong1,Zhou Xiao1ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Abstract

Aiming at reducing image detail loss and edge blur in the existing nonuniformity correction (NUC) methods, a new visible-image-assisted NUC algorithm based on a dual-discriminator generative adversarial network (GAN) with SEBlock (VIA-NUC) is proposed. The algorithm uses the visible image as a reference for better uniformity. The generative model downsamples the infrared and visible images separately for multiscale feature extraction. Then, image reconstruction is achieved by decoding the infrared feature maps with the assistance of the visible features at the same scale. During decoding, SEBlock, a channel attention mechanism, and skip connection are used to ensure that more distinctive channel and spatial features are extracted from the visible features. Two discriminators based on vision transformer (Vit) and discrete wavelet transform (DWT) were designed, which perform global and local judgments on the generated image from the texture features and frequency domain features of the model, respectively. The results are then fed back to the generator for adversarial learning. This approach can effectively remove nonuniform noise while preserving the texture. The performance of the proposed method was validated using public datasets. The average structural similarity (SSIM) and average peak signal-to-noise ratio (PSNR) of the corrected images exceeded 0.97 and 37.11 dB, respectively. The experimental results show that the proposed method improves the metric evaluation by more than 3%.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. DnRCNN: Deep Recurrent Convolutional Neural Network for HSI Destriping;Guan;IEEE Trans. Neural Netw. Learn. Syst.,2022

2. Adaptive Correction Algorithm of Infrared Image Based on Encoding and Decoding Residual Network;Mou;Infrared Technol.,2020

3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014, January 8–13). Generative adversarial nets. Proceedings of the Advances in Neural Information Processing Systems (NIPS 2014), Montreal, QC, Canada.

4. Hu, J., Shen, L., and Sun, G. (2018, January 18–23). Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3