Energy Harvesting and Task-Aware Multi-Robot Task Allocation in Robotic Wireless Sensor Networks

Author:

Gul Omer Melih1ORCID

Affiliation:

1. Department of Computer Engineering, Bahcesehir University, 34349 Istanbul, Turkey

Abstract

In this work, we investigate an energy-aware multi-robot task-allocation (MRTA) problem in a cluster of the robot network that consists of a base station and several clusters of energy-harvesting (EH) robots. It is assumed that there are M+1 robots in the cluster and M tasks exist in each round. In the cluster, a robot is elected as the cluster head, which assigns one task to each robot in that round. Its responsibility (or task) is to collect the resultant data from the remaining M robots to aggregate and transmit directly to the BS. This paper aims to allocate the M tasks to the remaining M robots optimally or near optimally by considering the distance to be traveled by each node, the energy required for executing each task, the battery level at each node, and the energy-harvesting capabilities of the nodes. Then, this work presents three algorithms: Classical MRTA Approach, Task-aware MRTA Approach, EH and Task-aware MRTA Approach. The performances of the proposed MRTA algorithms are evaluated under both independent and identically distributed (i.i.d.) and Markovian energy-harvesting processes for different scenarios with five robots and 10 robots (with the same number of tasks). EH and Task-aware MRTA Approach shows the best performance among all MRTA approaches by keeping up to 100% more energy in the battery than the Classical MRTA Approach and keeping up to 20% more energy in the battery than the Task-aware MRTA Approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3