Genetic Structure and Selection Signature in Flora Scent of Roses by Whole Genome Re-Sequencing

Author:

Sun Meile1,Ren Xiangrong1,Liu Ya1,Yang Jing1,Hui Jingtao1,Zhang Yukun1,Cui Yanhua1,Zhang Jun1,Lin Guocang1,Li Yan2ORCID

Affiliation:

1. Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830091, China

2. College of Ecology and Environment, Xinjiang University, Urumqi 830046, China

Abstract

Roses are important plants, and they are cultivated worldwide for their beautiful flowers, remarkable scent, and nutritious hips. In this study, we re-sequenced the whole genomes of 57 rose cultivars and one wild species that originated from different regions around the world and had different scents, aiming to evaluate their genetic structure and to detect the potential signature of the selective sweep between different scent groups with single-nucleotide polymorphism (SNP) and indel markers. The roses were sequenced at an average depth of 6× to the reference genome of Rosa ‘Old blush’. A total of 2,375,949 SNPs were obtained. The SNP numbers varied among the 58 samples, with an average of 1,271,906 per sample. The phylogeny and population structure revealed that the roses could be divided into three main clusters; however, the groups were not consistent in terms of geographic origin or scent classification. These indicated that rose cultivars have a complex genetic background due to the extensive hybridization between cultivated roses or wild rosa species worldwide. A selective sweep analysis was conducted to detect the selection signatures in rose scent traits. A total of 2430 candidate genes were identified in the strong scent groups, and were at the top 5% FST compared to the moderate group. These genes were significantly enriched in the KEGG pathways of tyrosine metabolism, cyanoamino acid metabolism, alpha-linolenic acid metabolism (13 genes), and phenylpropanoid biosynthesis (30 genes). When the low-scent group was used as the control, 2604 candidate genes were identified at the top 5% FST that were significantly enriched in the KEGG pathways of alpha-linolenic acid metabolism (15 genes), and glutathione metabolism (23 genes). We also observed genes enriched in pathways including the linoleic acid metabolism (five genes), diterpenoid biosynthesis (six genes), and monoterpenoid biosynthesis (seven genes), although they were not significant. These implied a positive selection of rose cultivars with a strong fragrance in terms of fatty acid derivatives, terpenoids and benzenoids/phenylpropanoids during rose breeding. Our study establishes a foundation for the further large-scale characterization of rose germplasm, improving the genetic knowledge of the background of roses.

Funder

basic scientific research fund for the public welfare research institutes of the Xinjiang Uygur Autonomous Region

key research and development plan projects of the Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3