The Effect of Material Fresh Properties and Process Parameters on Buildability and Interlayer Adhesion of 3D Printed Concrete

Author:

Panda Biranchi,Noor Mohamed Nisar Ahamed,Paul Suvash Chandra,Bhagath Singh GVP,Tan Ming Jen,Šavija BrankoORCID

Abstract

The advent of digital concrete fabrication calls for advancing our understanding of the interaction of 3D printing with material rheology and print parameters, in addition to developing new measurement and control techniques. Thixotropy is the main challenge associated with printable material, which offers high yield strength and low viscosity. The higher the thixotropy, the better the shape stability and the higher buildability. However, exceeding a minimum value of thixotropy can cause high extrusion pressure and poor interface bond strength if the printing parameters are not optimized to the part design. This paper aims to investigate the effects of both material and process parameters on the buildability and inter-layer adhesion properties of 3D printed cementitious materials, produced with different thixotropy and print head standoff distances. Nano particles are used to increase the thixotropy and, in this context, a lower standoff distance is found to be useful for improving the bond strength. The low viscosity “control” sample is unaffected by the variation in standoff distances, which is attributed to its flowability and low yield stress characteristics that lead to strong interfacial bonding. This is supported by our microscopic observations.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 179 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3