Abstract
Non-isothermal oxidation is one of the important issues for the safe application of Ti-Al alloys, so this study aimed to illustrate the non-isothermal oxidation behaviors and the corresponding mechanisms of a TiAl-based alloy in comparison with a Ti3Al-based alloy. The non-isothermal oxidation behaviors of Ti-46Al-2Cr-5Nb and Ti-24Al-15Nb-1.5Mo alloys in pure oxygen were comparatively investigated with a thermogravimetry-differential scanning calorimetry (TGA/DSC) simultaneous thermal analyzer heating from room temperature to 1450 °C with a heating rate of 40 °C/min. When the temperature rose above 1280 °C, the oxidation rate of the Ti-46Al-2Cr-5Nb alloy sharply increased and exceeded that of the Ti-24Al-15Nb-1.5Mo alloy owing to the occurrence of internal oxidation. When the temperature was higher than 1350 °C, the oxidation rate of the Ti-46Al-2Cr-5Nb alloy decreased obviously due to the generation of an oxygen-barrier β-Al2TiO5-rich layer by a chemical reaction between Al2O3 and TiO2 in the oxide scale. Based on Wagner’s theory of internal oxidation, the reason for the occurrence of internal oxidation in the Ti-46Al-2Cr-5Nb alloy is the formation of the α phase in the subsurface, while no internal oxidation occurred in the Ti-24Al-15Nb-1.5Mo alloy due to the existence of the β phase in the subsurface with the enrichment of Nb and Mo.
Funder
National Natural Science Foundation of China
Aviation Innovation Foundation of China
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献