Study of the Comparative Effect of Sintering Methods and Sintering Additives on the Microstructure and Performance of Si3N4 Ceramic

Author:

Yang Liangliang,Ditta Allah,Feng Bo,Zhang Yue,Xie Zhipeng

Abstract

The Si3N4 ceramics were prepared in this study by gas pressure sintering (GPS) and spark plasma sintering (SPS) techniques, using 5 wt.% Yb2O3–2 wt.% Al2O3 and 5 wt.% CeO2–2 wt.% Al2O3 as sintering additives. Based on the difference in sintering methods and sintering additive systems, the relative density, phase composition, phase transition rate, microstructure, mechanical properties, and thermal conductivity were comparatively investigated and analyzed. SPS proved to be more efficient than GPS, producing higher relative density, bending strength, hardness, and thermal conductivity of Si3N4 ceramic with both additive systems; however, the phase transition rate and fracture toughness were lower. Similarly, higher bending strength, hardness, and thermal conductivity were achieved with Yb2O3–Al2O3 than CeO2–Al2O3 in the case of GPS and SPS, and only the relative density, fracture toughness, and phase transition rate were lower.

Funder

National Basic Research Program of China (973 Program)

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3