Dosimetric Impact on the Flattening Filter and Addition of Gold Nanoparticles in Radiotherapy: A Monte Carlo Study on Depth Dose Using the 6 and 10 MV FFF Photon Beams

Author:

Spina ArmandoORCID,Chow James C. L.ORCID

Abstract

Purpose: This phantom study investigated through Monte Carlo simulation how the dose enhancement varied with depth, when gold nanoparticles (NPs) were added using the flattening filter-free (FFF) photon beams in gold NP-enhanced radiotherapy. Method: A phantom with materials varying from pure water to a mixture of water and gold NPs at different concentrations (3–40 mg/mL) were irradiated by the 6 and 10 MV flattening filter (FF) and FFF photon beams. Monte Carlo simulations were carried out to determine the depth doses along the central beam axis of the phantom up to a depth of 40 cm. The dose enhancement ratio (DER) and FFF enhancement ratio (FFFER) were calculated based on the Monte Carlo results. Results: The DER values were found decreased with an increase of depth and increase of NP concentration in the phantom. For the maximum NP concentration of 40 mg/mL, the DER values decreased 6.9, 12, 4.6 and 7.2% at a phantom depth from 2 to 40 cm, using the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams, respectively. The maximum DER values for the 6 MV beams were 1.08 (FF) and 1.14 (FFF), while those for the 10 MV beams were 1.04 (FF) and 1.07 (FFF). When the FF was removed from the linear accelerator head, the FFFER showed a more significant increase of dose enhancement for the 6 MV beams (1.057) than the 10 MV (1.031). Conclusion: From the DER and FFFER values based on the Monte Carlo results, it is concluded that the dose enhancement with depth was dependent on the NP and beam variables, namely, NP concentration, presence of FF in the beam and beam energy. Dose enhancement was more significant when using the lower photon beam energy (i.e., 6 MV), FFF photon beam and higher NP concentration in the study.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3