Abstract
Concrete presents different internal micro-structure and damage characteristics because of the different content of steel fibers and the randomness of its distribution. Therefore, the failure process of steel-fiber-reinforced concrete (SFRC) should be divided into different stages and the damage types should be classified to further clarify the strengthening mechanism of steel fibers. The role of volume fractions of steel fibers in the splitting-tensile strength of concrete was investigated by split tensile tests for concrete with four different volume fractions of steel fibers (0.0%, 1.0%, 1.5%, 2.0%). The acoustic emission energy and horizontal displacement of concrete in the splitting-tensile process were monitored by combing digital image correlation (DIC) and acoustic emission (AE) techniques, and the microscopic failure mechanism of SFRC was analyzed emphatically. The results showed that the addition of steel fibers improved the splitting-tensile strength of concrete. With the increase of the volume fraction of steel fibers, the splitting-tensile strength of concrete increased first and then decreased, and reached the maximum value of 5.294 MPa when the content was 1.5%. It was observed that the overall failure mechanism could be divided into four stages: slow accumulation of elastic energy (I); rapid accumulation of elastic energy (II); rapid accumulation of dissipated energy (III); a slow decrease of elastic energy and a slow increase of dissipated energy (IV). Tensile failure dominated the failure process of concrete splitting-tensile resistance, while there was a part of shear failure.
Funder
Shaanxi Provincial Youth Science and Technology Rising Star Project
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献