Investigation of Fluidity and Strength of Enhanced Foam-Cemented Paste Backfill

Author:

Shi Xiuzhi,Zhao Zhengkai,Chen XinORCID,Kong Kun,Yuan Jingjing

Abstract

To solve the problems of high cement dosage and poor fluidity of conventional cemented paste backfill (CPB) materials, the fluidity and strength properties of foam-cemented paste backfill (FCPB) were studied in combination. Based on determining the optimum contents of a foaming agent and a foam stabilizer, FCPB density was measured. To investigate the fluidity and strength of FCPB under different foam contents (0%, 5%, 10%, 15%, 20%, 25%, 30%, and 40%), different solid contents (75 wt.% and 77 wt.%), and different cement-tailing ratios (1:4 and 1:5), spread tests and unconfined compressive strength (UCS) tests were conducted. In addition, the FCPB microstructure was analyzed by scanning electron microscopy (SEM). The results indicate that the optimum combination dosages of sodium lauryl sulfate (K12) and sodium carboxymethyl cellulose (CMC) are 0.5 g/L and 0.2 g/L. The density decreases with the foam content (FC), but the fluidity and strength of the FCPB increase first and then decrease with the FC. In addition, the microstructure analysis explains the enhanced strength of FCPB by adding foam. These results contribute to further understanding the effect of foam content on the fluidity and strength of the FCPB.

Funder

National Natural Science Foundation Project of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3