Calculation and Analysis of Temperature Damage of Shimantan Concrete Gravity Dam Based on Macro–Meso Model

Author:

Jiao Yantao,Cheng LipingORCID,Wang Ning,Wang Sizhe,Ma Luyao

Abstract

Considering that ANSYS software will automatically quit or the computer will freeze when generating random aggregate models of concrete by using some existing methods that are based on the ANSYS parametric design language (APDL), a new method of random aggregate placement using the ESEL command in APDL and the rotation of the local coordinate system is proposed in this paper. According to this method, a multiscale macroscopic and mesoscopic finite element model of the No. 9 non-overflow dam section of Shimantan dam is constructed. In addition, considering that most of the damage models adopted by the existing mesoscale simulation of concrete damage and fracture cannot take into account the interaction between aggregates, interfacial transition zone (ITZ), and mortar, an improved anisotropic temperature damage model is proposed in this paper. The aggregate placement simulation results show that the method presented in this paper can quickly generate two-dimensional (2D) random concrete aggregates, and the generation of three-dimensional (3D) aggregates can also be completed in a very short time, which can greatly improve the aggregate generation efficiency. Moreover, the aggregate shape generated by this method is very close to the real concrete aggregate shape. The crack propagation simulation results show that the sudden rise and fall of temperature can cause damage in the mortar and ITZ of concrete inside the dam body, which is the main reason for the generation of macroscopic through-cracks in the No. 9 non-overflow dam section of Shimantan dam during the operation period. Finally, it can be learned from the results that the method presented in this paper is reasonable and feasible, and can be extended to the crack propagation simulation of some other concrete gravity and arch dams.

Funder

Foundation for Dr in North China University of Water Resources and Electric Power

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3