Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining

Author:

Lin Yunlei1,Zhou Yuan1ORCID

Affiliation:

1. School of Public Policy and Management, Tsinghua University, Beijing 100084, China

Abstract

As a versatile energy carrier, hydrogen possesses tremendous potential to reduce greenhouse emissions and promote energy transition. Global interest in producing hydrogen from renewable energy sources and transporting, storing, and utilizing hydrogen is rising rapidly. However, the high costs of producing clean hydrogen and the uncertain application scenarios for hydrogen energy result in its relatively limited utilization worldwide. It is necessary to find new promising technological paths to drive the development of hydrogen energy. As part of technological innovation, emerging technologies have vital features such as prominent impact, novelty, relatively fast growth, etc. Identifying emerging hydrogen-energy-related technologies is important for discovering innovation opportunities during the energy transition. Existing research lacks analysis of the characteristics of emerging technologies. Thus, this paper proposes a method combining the latent Dirichlet allocation topic model and hydrogen-energy expert group decision-making. This is used to identify emerging hydrogen-related technology regarding two features of emerging technologies, novelty and prominent impact. After data processing, topic modeling, and analysis, the patent dataset was divided into twenty topics. Six emerging topics possess novelty and prominent impact among twenty topics. The results show that the current hotspots aim to promote the application of hydrogen energy by improving the performance of production catalysts, overcoming the wide power fluctuations and large-scale instability of renewable energy power generation, and developing advanced hydrogen safety technologies. This method efficiently identifies emerging technologies from patents and studies their development trends. It fills a gap in the research on emerging technologies in hydrogen-related energy. Research achievements could support the selection of technology pathways during the low-carbon energy transition.

Funder

National Natural Science Foundation of China

Ministry of Education in China Project of Humanities and Social Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference108 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3