Quantifying Individual PM2.5 Exposure with Human Mobility Inferred from Mobile Phone Data

Author:

Hu Zhaoping12ORCID,Huang Le12,Zhai Xi3,Yang Tao3,Jin Yaohui12,Xu Yanyan12ORCID

Affiliation:

1. MoE Key Laboratory of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China

2. Data-Driven Management Decision Making Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China

3. Shanghai Urban and Rural Construction and Traffic Development Research Institute, Shanghai 200240, China

Abstract

Treatment of air pollution and health impacts are both crucial components of long-term sustainability. Measuring individual exposure to air pollution is significant to evaluating public health risks. In this paper, we introduce a big data analytics framework to quantify individual PM2.5 exposure by combining residents’ mobility traces and PM2.5 concentration at a 1-km grid level. Diverging from traditional approaches reliant on population data, our methodology can accurately estimate the hourly PM2.5 exposure at the individual level. Taking Shanghai as an example, we model one million anonymous users’ mobility behavior based on 60 billion Call Detail Records (CDRs) data. By integrating users’ stay locations and high-resolution PM2.5 concentration, we quantify individual PM2.5 exposure and find that the average PM2.5 exposure of residences in Shanghai is 60.37 ug·h·m−3 during the studied period. Further analysis reveals the unbalance of the spatiotemporal distribution of PM2.5 exposure in Shanghai. Our PM2.5 exposure estimation method provides a reliable evaluation of environmental hazards and public health predicaments confronted by residents, facilitating the formulation of scientific policies for environmental control, and thus advancing the realization of sustainable development.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3