Abstract
Due to a proportionally increasing population and food demands, the food industry has come up with wide innovations, opportunities, and possibilities to manufacture meat under in vitro conditions. The amalgamation of cell culture and tissue engineering has been the base idea for the development of the synthetic meat, and this has been proposed to be a pivotal study for a futuristic muscle development program in the medical field. With improved microbial and chemical advancements, in vitro meat matched the conventional meat and is proposed to be eco-friendly, healthy, nutrient rich, and ethical. Despite the success, there are several challenges associated with the utilization of materials in synthetic meat manufacture, which demands regulatory and safety assessment systems to manage the risks associated with the production of cultured meat. The role of 3D bioprinting meat analogues enables a better nutritional profile and sensorial values. The integration of nanosensors in the bioprocess of culture meat eased the quality assessment throughout the food supply chain and management. Multidisciplinary approaches such as mathematical modelling, computer fluid dynamics, and biophotonics coupled with tissue engineering will be promising aspects to envisage the future prospective of this technology and make it available to the public at economically feasible rates.
Funder
Ministry of Trade, Industry and Energy
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献