Mutation Associated with Orange Fruit Color Increases Concentrations of β-Carotene in a Sweet Pepper Variety (Capsicum annuum L.)

Author:

Tomlekova Nasya,Spasova-Apostolova Velichka,Pantchev IvelinORCID,Sarsu FatmaORCID

Abstract

Pepper is the second most important vegetable crop in Bulgarian agriculture and has become the subject of extensive breeding programs that frequently employ induced mutagenesis. The success of breeding programs can be enhanced by the efficient and integral application of different biochemical and molecular methods to characterize specific mutant alleles. On the other hand, identifying new cost-effective methods is important under a limited-resources environment. In this paper we compare the levels of five health-related carotenoid compounds of fruits (α-carotene, β-carotene, lutein, β-cryptoxanthin, zeaxanthin) between a mutant variety Oranzheva kapia (possessing high ß-carotene concentration) and a corresponding initial pepper variety Pazardzhishka kapia 794. Both varieties are intended for fresh consumption. Pepper is a major natural source of β-carotene. It was observed that fruit at both commercial and botanical maturity from mutant variety had greater α-carotene and β-carotene concentrations to the initial variety (7.49 and 1.94 times higher, respectively) meaning that the mutant was superior in fruit quality to the initial genotype. Two hydroxylase enzymes, converting α- and β-carotene to lutein and zeaxanthin, respectively, are known to exist in pepper and are encoded by two genes on chromosomes 3 and 6-CrtZchr03 and CrtZchr06. The molecular characterization of the mutant variety through locus-specific Polymerase chain reaction amplification, gene cloning and sequencing as well as expression was performed. Our results suggest that the increased ß-carotene accumulation in the mutant variety Oranzheva kapia results from a biosynthetic pathway breakdown due to deletion of CrtZchr03 gene.

Funder

International Atomic Energy Agency

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3