MicroRNAs Involved in the Therapeutic Functions of Noni (Morinda citrifolia L.) Fruit Juice in the Treatment of Acute Gouty Arthritis in Mice Induced with Monosodium Urate

Author:

Li Xiaohong,Liu Yue,Shan Yaming,Wang Yukun,Li Zhandong,Bi Yingxin,Zhao Weihao,Yin Yuhe,Wang Tianlong,Li Shuang,Sun FengjieORCID,Chen Changwu,Li HaoORCID

Abstract

We investigated the functions of microRNAs in the therapeutic effects of noni (Morinda citrifolia L.) fruit juice on mouse models of acute gouty arthritis induced with monosodium urate (MSU). Compared with the model group (treated with MSU), mice in both the positive control group (treated with both MSU and colchicine) and noni fruit juice group (treated with MSU and noni fruit juice) showed a significantly decreased degree of paw swelling in 5 days, as well as the contents of two types of proinflammatory cytokines (i.e., NALP3 and TNF-α). Based on the next-generation sequencing technology, a total of 3896 microRNAs (234 known and 3662 novel) were identified in mice treated with noni fruit juice. A large amount of differentially expressed miRNAs were identified in the noni fruit juice group, suggesting the significant effects of noni fruit juice on the mice with acute gouty arthritis, while the different patterns of change in the numbers of both upregulated and downregulated miRNAs in both noni fruit juice and positive control groups indicated that the mice of acute gouty arthritis may be regulated by differential mechanisms between the treatments of noni fruit juice and colchicine. The target genes of microRNAs involved in the pathogenesis and pathology of acute gouty arthritis in mice were identified and further annotated by both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Our results revealed the therapeutic effects of noni fruit juice on acute gouty arthritis in mice with a group of microRNAs involved in the pharmacological mechanisms of noni fruit juice, providing scientific evidence to support both the agricultural cultivation and pharmacological significance of noni plants.

Funder

Jilin Scientific and Technological Development Program

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3