Fruit Tree Legume Herb Intercropping Orchard System Is an Effective Method to Promote the Sustainability of Systems in a Karst Rocky Desertification Control Area

Author:

Cheng Hanting,Hu Wen,Zhou Xiaohui,Dong Rongshu,Liu Guodao,Li Qinfen,Zhang Xian

Abstract

Karst rocky desertification control through the conversion of cropland to economic forest is vital for vegetation recovery and the alleviation of distinct contradiction between ecological conservation and economic development. To evaluate the sustainability of orchard systems from the perspectives of ecosystem and economic services, we employed emergy analysis for the comprehensive and quantitative assessment of two orchard system types: (1) mango monoculture (MM) and macadamia monoculture (NM) and (2) mango Vicia angustifolia intercropping (MVI) and macadamia Desmodium intortum intercropping (NDI). In the past, these areas were converted from a maize field (MF) in the southwest karst area of China. Our results showed that, compared to the MF, the total emergy input in monoculture orchards (NM and NM) decreased by 8.99% and 35.25%, and the economic profit (EP) increased by 20,406.57 and 114,406.32 RMB·ha−1, respectively. However, the non-renewable environmental input (energy loss of soil, SOM reduction, and irrigation water) still accounted for 43.25% and 62.01% in the total emergy input. After conversion to orchard legume herb intercropping (MVI and NDI), purchased resource inputs accounted for 86.36% and 68.20% of the total emergy input. Orchard legume herb intercropping further increased the EP, while improving ecosystem services and providing the capability for groundwater recharge, soil conservation, and soil carbon sequestration. The intercropping orchards were relatively sustainable from the view of economic and ecosystem services (EISD > 3.18), due to lower environmental loading ratios (ELR < 1.15), higher emergy yield ratio (EYR > 0.89), and economic output/input ratio (O/I ratio > 2.41). The integrated pest management simulations indicated that, compared to intercropping systems, the renewable percent (R%) and emergy sustainability index (ESI) of the scenario simulations (MVI-O and NDI-O) increased by 17.61% and 10.51%, respectively. These results suggest that integrated pest management is an effective method to improve the short-term sustainability of the orchard system. Therefore, the management of intercropped legume herb within an orchard system is an effective way to achieve sustainable development.

Funder

Liu guodao

Publisher

MDPI AG

Subject

Forestry

Reference72 articles.

1. Responses of soil nutrients and microbial communities to three restoration strategies in a karst area, southwest China

2. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region

3. Effects of Different Vegetation Restoration Strategies on Soil Penetrability of Karst Ecosystem in Guizhou Province;Cheng;J. Soil Water Conserv.,2020

4. Rocky desertification in Southwest China: Impacts, causes, and restoration

5. Comprehensive control on rocky desertification in karst regions of southwestern China: Achievements, problems, and countermeasures;Chen;Carsolog. Sin.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3