Rate–Distortion–Perception Optimized Neural Speech Transmission System for High-Fidelity Semantic Communications

Author:

Yao Shengshi1ORCID,Xiao Zixuan1,Niu Kai12

Affiliation:

1. Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Department of Broadband Communication, Peng Cheng Laboratory, Shenzhen 518066, China

Abstract

We consider the problem of learned speech transmission. Existing methods have exploited joint source–channel coding (JSCC) to encode speech directly to transmitted symbols to improve the robustness over noisy channels. However, the fundamental limit of these methods is the failure of identification of content diversity across speech frames, leading to inefficient transmission. In this paper, we propose a novel neural speech transmission framework named NST. It can be optimized for superior rate–distortion–perception (RDP) performance toward the goal of high-fidelity semantic communication. Particularly, a learned entropy model assesses latent speech features to quantify the semantic content complexity, which facilitates the adaptive transmission rate allocation. NST enables a seamless integration of the source content with channel state information through variable-length joint source–channel coding, which maximizes the coding gain. Furthermore, we present a streaming variant of NST, which adopts causal coding based on sliding windows. Experimental results verify that NST outperforms existing speech transmission methods including separation-based and JSCC solutions in terms of RDP performance. Streaming NST achieves low-latency transmission with a slight quality degradation, which is tailored for real-time speech communication.

Funder

National Natural Science Foundation of China

BUPT Excellent Ph.D. Students Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3