Comparative Transcriptome Analyses of Gene Response to Different Light Conditions of Camellia oleifera Leaf Using Illumina and Single-Molecule Real-Time-Based RNA-Sequencing

Author:

Song Qianqian,Chen Shipin,Wu Yuefeng,He Yifan,Feng Jinling,Yang Zhijian,Lin Wenjun,Zheng Guohua,Li Yu,Chen Hui

Abstract

Camellia oleifera Abel. is a critical oil tree species. Camellia oil, which is extracted from the seeds, is widely regarded as a premium cooking oil, with the content of oleic acid being over 80%. Light is thought to be one of the largest essential natural components in the regulation of plant developmental processes, and different light qualities can considerably influence plant physiological and phenotypic traits. In this research, we examined the growth and physiological responses of C. oleifera “MIN 43” cultivar plantlets to three different wavelengths of light, containing white, red, and blue light, and we utilized the combination of the PacBio single-molecule real-time (SMRT) and Illumina HiSeq RNA sequencing to obtain the mRNA expression profiles. The results showed that plantlets growing under blue light conditions displayed superior growth performance, including stimulated enhancement of the leaf area, increased leaf number, increased chlorophyll synthesis, and improved photosynthesis. Furthermore, SMAT sequencing created 429,955 reads of inserts, where 406,722 of them were full-length non-chimeric reads, and 131,357 non-redundant isoforms were produced. Abundant differentially expressed genes were found in leaves under different light qualities by RNA-sequencing. Gene expression profiles of actin, dynein, tubulin, defectively organized tributaries 3 (DOT3), and ADP ribosylation factor 5 (ARF5) were associated with the greatest leaf performance occurring under blue light conditions. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified hundreds of pathways involved in different light conditions. The pathways of the plant circadian rhythm and hormone signal transduction were associated with different light quality responses in C. oleifera. Phytochrome B (PHYB), constitutively photomorphogenic 1 (COP1), long hypocotyl 5 (HY5), auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen 3 (GH3), and small auxin-up RNA (SAUR), which were differentially expressed genes involved in these two pathways, play a vital role in responses to different wavelengths of light in C. oleifera. In addition, blue light significantly promotes flavonoid biosynthesis via changing expression of related genes.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3