Fabrication and Packaging of CMUT Using Low Temperature Co-Fired Ceramic

Author:

Yildiz Fikret,Matsunaga Tadao,Haga Yoichi

Abstract

This paper presents fabrication and packaging of a capacitive micromachined ultrasonic transducer (CMUT) using anodically bondable low temperature co-fired ceramic (LTCC). Anodic bonding of LTCC with Au vias-silicon on insulator (SOI) has been used to fabricate CMUTs with different membrane radii, 24 µm, 25 µm, 36 µm, 40 µm and 60 µm. Bottom electrodes were directly patterned on remained vias after wet etching of LTCC vias. CMUT cavities and Au bumps were micromachined on the Si part of the SOI wafer. This high conductive Si was also used as top electrode. Electrical connections between the top and bottom of the CMUT were achieved by Au-Au bonding of wet etched LTCC vias and bumps during anodic bonding. Three key parameters, infrared images, complex admittance plots, and static membrane displacement, were used to evaluate bonding success. CMUTs with a membrane thickness of 2.6 µm were fabricated for experimental analyses. A novel CMUT-IC packaging process has been described following the fabrication process. This process enables indirect packaging of the CMUT and integrated circuit (IC) using a lateral side via of LTCC. Lateral side vias were obtained by micromachining of fabricated CMUTs and used to drive CMUTs elements. Connection electrodes are patterned on LTCC side via and a catheter was assembled at the backside of the CMUT. The IC was mounted on the bonding pad on the catheter by a flip-chip bonding process. Bonding performance was evaluated by measurement of bond resistance between pads on the IC and catheter. This study demonstrates that the LTCC and LTCC side vias scheme can be a potential approach for high density CMUT array fabrication and indirect integration of CMUT-IC for miniature size packaging, which eliminates problems related with direct integration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3