Mechanism of Deoxygenation and Cracking of Fatty Acids by Gas-Phase Cationic Complexes of Ni, Pd, and Pt

Author:

Parker KevinORCID,Pho Victoria,O’Hair Richard A. J.,Ryzhov VictorORCID

Abstract

Deoxygenation and subsequent cracking of fatty acids are key steps in production of biodiesel fuels from renewable plant sources. Despite the fact that multiple catalysts, including those containing group 10 metals (Ni, Pd, and Pt), are employed for these purposes, little is known about the mechanisms by which they operate. In this work, we utilized tandem mass spectrometry experiments (MSn) to show that multiple types of fatty acids (saturated, mono-, and poly-unsaturated) can be catalytically deoxygenated and converted to smaller hydrocarbons using the ternary metal complexes [(phen)M(O2CR)]+], where phen = 1,10-phenanthroline and M = Ni, Pd, and Pt. The mechanistic description of deoxygenation/cracking processes builds on our recent works describing simple model systems for deoxygenation and cracking, where the latter comes from the ability of group 10 metal ions to undergo chain-walking with very low activation barriers. This article extends our previous work to a number of fatty acids commonly found in renewable plant sources. We found that in many unsaturated acids cracking can occur prior to deoxygenation and show that mechanisms involving group 10 metals differ from long-known charge-remote fragmentation reactions.

Funder

American Chemical Society Petroleum Research Fund

NSF MRI

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3