Requiem for the Rate-Determining Step in Complex Heterogeneous Catalytic Reactions?

Author:

Murzin Dmitry Yu.ORCID

Abstract

The concept of the rate determining step, i.e., the step having the strongest influence on the reaction rate or even being the only one present in the rate equation, is often used in heterogeneous catalytic reactions. The utilization of this concept mainly stems from a need to reduce complexity in deriving explicit rate equations or searching for a better catalyst based on the theoretical insight. When the aim is to derive a rate equation with eventual kinetic modelling for single-route mechanisms with linear sequences, the analytical rate expressions can be obtained based on the theory of complex reactions. For such mechanisms, a single rate limiting step might not be present at all and the common practice of introducing such steps is due mainly to the convenience of using simpler expressions. For mechanisms with a combination of linear and nonlinear steps or those just comprising non-linear steps, the reaction rates are influenced by several steps depending on reaction conditions, thus a reduction in complexity to a single rate limiting step can lead to misinterpretations. More widespread utilization of a microkinetic approach when the reaction rate constants can be computed with reasonable accuracy based on the theoretical insight, and availability of software for kinetic modelling, when a system of differential equations for reactants and products will be solved together with differential equations for catalytic species and the algebraic conservation equation for the latter, will eventually make the concept of the rate limiting step obsolete.

Publisher

MDPI AG

Subject

General Medicine

Reference48 articles.

1. Equilibrium of Homochiral Oligomerization of a Mixture of Enantiomers. Its Relevance to Nonlinear Effects in Asymmetric Catalysis

2. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool

3. Kinetics of Homogeneous Multistep Reactions;Helfferich,2001

4. Comprehensive Enzyme Kinetics;Leskovac,2003

5. Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms;Temkin,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3