Transient Behavior of CO and CO2 Hydrogenation on Fe@SiO2 Core–Shell Model Catalysts—A Stoichiometric Analysis of Experimental Data

Author:

Zambrzycki Christian,Güttel RobertORCID

Abstract

The hydrogenation of CO and CO2 from industrial exhaust gases into CH4 represents a promising method for sustainable chemical energy storage. While iron-based catalysts are in principle suitable for that purpose, the active metal Fe undergoes a complex transformation during the chemical reaction process. However, only little is known about the change in catalytically active species under reaction conditions, primarily caused by structural changes in the catalyst material, so far. By using core–shell model materials, factors that alter the catalyst structure can be excluded, making it possible to observe the direct influence of the reactants on the activity in the present work. Furthermore, stoichiometric analysis was used as a key tool for the evaluation of individual key reactions in the complex reaction network purely from experimental data, thus making it possible to draw conclusions about the catalyst state. In the case of CO hydrogenation, the presumed Boudouard reaction and the associated carburization of the catalyst can be quantified and the main reaction (CO methanation) can be determined. The results of the CO2 hydrogenation showed that the reverse water–gas shift reaction mainly took place, but under an ongoing change in the catalytic active iron phase. Due to the systematic exchange between CO and CO2 in the reactant gas stream, a mutual influence could also be observed. The results from the stoichiometric analysis provide the basis for the development of kinetic models for the key reactions in future work.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3