Confinement of LiAlH4 in a Mesoporous Carbon Black for Improved Near-Ambient Release of H2

Author:

Ramah Pavle1ORCID,Palm Rasmus12ORCID,Tuul Kenneth1ORCID,Aruväli Jaan3,Månsson Martin2,Lust Enn1ORCID

Affiliation:

1. Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

2. Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

3. Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

Abstract

LiAlH4 is a potential solid-state H2 storage material, where safe and efficient H2 storage is of critical importance for the transition towards a sustainable emission-free economy. To improve the H2 release and storage properties of LiAlH4, confinement in porous media decreases the temperature of H2 release and improves the kinetics, where considerably improved H2 release properties are accompanied by a loss in the total amount of H2 released. The capability of mesoporous carbon black to improve the H2 storage properties of confined LiAlH4 is investigated with temperature-programmed desorption and time-stability measurements using X-ray diffraction and N2 gas adsorption measurements to characterize the composite materials’ composition and structure. Here, we present the capability of commercial carbon black to effectively lower the onset temperature of H2 release to that of near-ambient, ≥295 K. In addition, the confinement in mesoporous carbon black destabilized LiAlH4 to a degree that during ≤14 days in storage, under Ar atmosphere and at ambient temperature, 40% of the theoretically contained H2 was lost due to decomposition. Thus, we present the possibility of destabilizing LiAlH4 to a very high degree and, thus, avoiding the melting step before H2 release at around 440 K using scaffold materials with fine-tuned porosities.

Funder

EU through the European Regional Development Fund

Estonian Research Council Grants

Swedish Research Council

KTH, Sweden

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3