Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles

Author:

Shukla AbhishekORCID,Singh Subhash C.ORCID,Bhardwaj AbhishekORCID,Kotnala Ravindra Kumar,Uttam Kailash Narayan,Guo ChunleiORCID,Gopal Ram

Abstract

Titanium ferrite represents one of the most promising magnetic materials that exhibits optical absorption in both ultraviolet and visible spectral regions with a range of applications in photocatalysis, giant magnetoresistance, sensors, high-frequency modern power supplies, etc. Here in the present work, we report synthesizing titanium ferrite NPs via the co-precipitation method. As obtained ferrite nanopowders were characterized using XRD, UV-Visible absorption, Raman scattering, and variable sample magnetometer techniques. The crystalline size of NPs lies between 35 to 50 nm. The as-obtained nanopowder samples were calcined at 200, 500, 800 °C temperatures, and the resulting change in the optical, structural, and magnetic properties are investigated. The saturation magnetization of 500 °C calcined sample is higher than that calcined at 200 °C, but the magnetization value drastically becomes reduced for powder calcined at 800 °C temperature. The results of the present work can be used to understand the effects of annealing temperature on the structural and magnetic properties of other ferrite nanomaterials.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3