S-MAT: Semantic-Driven Masked Attention Transformer for Multi-Label Aerial Image Classification

Author:

Wu HongjunORCID,Xu ChengORCID,Liu HongzheORCID

Abstract

Multi-label aerial scene image classification is a long-standing and challenging research problem in the remote sensing field. As land cover objects usually co-exist in an aerial scene image, modeling label dependencies is a compelling approach to improve the performance. Previous methods generally directly model the label dependencies among all the categories in the target dataset. However, most of the semantic features extracted from an image are relevant to the existing objects, making the dependencies among the nonexistant categories unable to be effectively evaluated. These redundant label dependencies may bring noise and further decrease the performance of classification. To solve this problem, we propose S-MAT, a Semantic-driven Masked Attention Transformer for multi-label aerial scene image classification. S-MAT adopts a Masked Attention Transformer (MAT) to capture the correlations among the label embeddings constructed by a Semantic Disentanglement Module (SDM). Moreover, the proposed masked attention in MAT can filter out the redundant dependencies and enhance the robustness of the model. As a result, the proposed method can explicitly and accurately capture the label dependencies. Therefore, our method achieves CF1s of 89.21%, 90.90%, and 88.31% on three multi-label aerial scene image classification benchmark datasets: UC-Merced Multi-label, AID Multi-label, and MLRSNet, respectively. In addition, extensive ablation studies and empirical analysis are provided to demonstrate the effectiveness of the essential components of our method under different factors.

Funder

National Natural Science Foundation of China

Beijing Key Science and Technology Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference58 articles.

1. Local feature representation based on linear filtering with feature pooling and divisive normalization for remote sensing image classification

2. Remote Sensing Image Scene Classification Based on Global–Local Dual-Branch Structure Model

3. Triplet-Metric-Guided Multi-Scale Attention for Remote Sensing Image Scene Classification with a Convolutional Neural Network

4. Deep residual learning for image recognition;He;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

5. Mobilenetv2: Inverted residuals and linear bottlenecks;Sandler;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3