Two-Stage Model-Based Predicting PV Generation with the Conjugation of IoT Sensor Data

Author:

Heo Youngju1,Kim Jangkyum2,Choi Seong Gon3

Affiliation:

1. DGB Financial Holding Company, Seoul 04521, Republic of Korea

2. Department of Data Science, Sejong University, Seoul 05006, Republic of Korea

3. School of Information and Communication Engineering, Chungbuk University, Cheongju 28644, Republic of Korea

Abstract

This paper proposes a novel short-term photovoltaic voltage (PV) prediction scheme using IoT sensor data with the two-stage neural network model. It is efficient to use environmental data provided by the meteorological agency to predict future PV generation. However, such environmental data represent the average value of the wide area, and there is a limitation in detecting environmental changes in the specific area where the solar panel is installed. In order to solve such issues, it is essential to establish IoT sensor data to detect environmental changes in the specific area. However, most conventional research focuses only on the efficiency of IoT sensor data without taking into account the timing of data acquisition from the sensors. In real-world scenarios, IoT sensor data is not available precisely when needed for predictions. Therefore, it is necessary to predict the IoT data first and then use it to forecast PV generation. In this paper, we propose a two-stage model to achieve high-accuracy prediction results. In the first stage, we use predicted environmental data to access IoT sensor data in the desired future time point. In the second stage, the predicted IoT sensors and environmental data are used to predict PV generation. Here, we determine the appropriate prediction scheme at each stage by analyzing the model characteristics to increase prediction accuracy. In addition, we show that the proposed prediction scheme could increase prediction accuracy by more than 12% compared to the baseline scheme that only uses a meteorological agency to predict PV generation.

Funder

MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center

IITP

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3