Cavity Behavior of Fine-Grained 5A70 Aluminum Alloy during Superplastic Formation

Author:

Li Sheng,Jin Shunyao,Huang ZhongguoORCID

Abstract

The study of the exact physical mechanism of cavity nucleation and growth is significant in terms of predicting the extent of internal damage following superplastic deformation. The 5A70 alloy was processed by cold rolling for 14 passes with a total reduction deformation of 90% (20–2 mm) and the heat treatment was inserted at a thickness of 10 and 5 mm at 340 °C for 30 min. The superplastic tensile tests were performed at 400, 450, 500, 550 °C and the initial strain rate was 1 10−3 s−1. Cavities were observed at the head of the particle and the interface of the grain boundaries. It is suggested that the cavity was nucleated during the sliding/climbing of the dislocations, due to the precipitate pinning effect and the impeding grain boundary during grain boundary sliding (GBS). In this study, the results demonstrated a clear transition from diffusion growth to superplastic diffusion growth and plastic-controlled growth at a cavity radius larger than 1.52 and 13.90 μm. The cavity nucleation, growth, interlinkage and coalescence under the applied stress during the superplastic deformation, as well as the crack formation and expansion during the deformation, ultimately led to the superplastic fracture.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3