Query-Based Multiview Detection for Multiple Visual Sensor Networks

Author:

Hsu Hung-Min1,Yuan Xinyu1,Chuang Yun-Yen2,Sun Wei3ORCID,Chang Ray-I4ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA

2. Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

3. Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA

4. Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

Abstract

In IoT systems, the goal of multiview detection for multiple visual sensor networks is to use multiple camera perspectives to address occlusion challenges with multiview aggregation being a crucial component. In these applications, data from various interconnected cameras are combined to create a detailed ground plane feature. This feature is formed by projecting convolutional feature maps from multiple viewpoints and fusing them using uniform weighting. However, simply aggregating data from all cameras is not ideal due to different levels of occlusion depending on object positions and camera angles. To overcome this, we introduce QMVDet, a new query-based learning multiview detector, which incorporates an innovative camera-aware attention mechanism for aggregating multiview information. This mechanism selects the most reliable information from various camera views, thus minimizing the confusion caused by occlusions. Our method simultaneously utilizes both 2D and 3D data while maintaining 2D–3D multiview consistency to guide the multiview detection network’s training. The proposed approach achieves state-of-the-art accuracy on two leading multiview detection benchmarks, highlighting its effectiveness for IoT-based multiview detection scenarios.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3