Hyperspectral Characteristics and SPAD Estimation of Wheat Leaves under CO2 Microleakage Stress

Author:

Zhang Liuya1,Yuan Debao1,Fan Yuqing1,Yang Renxu1

Affiliation:

1. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

To non-destructively and rapidly monitor the chlorophyll content of winter wheat leaves under CO2 microleakage stress, and to establish the quantitative relationship between chlorophyll content and sensitive bands in the winter wheat growing season from 2023 to 2024, the leakage rate was set to 1 L/min, 3 L/min, 5 L/min, and 0 L/min through field experiments. The dimensional reduction was realized, fractional differential processing of a wheat canopy spectrum was carried out, a multiple linear regression (MLR) and partial least squares regression (PLSR) estimation model was constructed using a SPA selection band, and the model’s accuracy was evaluated. The optimal model for hyperspectral estimation of wheat SPAD under CO2 microleakage stress was screened. The results show that the spectral curves of winter wheat leaves under CO2 microleakage stress showed a “red shift” of the green peak and a “blue shift” of the red edge. Compared with 1 L/min and 3 L/min, wheat leaves were more affected by CO2 at 5 L/min. Evaluation of the accuracy of the MLR and PLSR models shows that the MLR model is better, where the MLR estimation model based on 1.1, 1.8, 0.4, and 1.7 differential SPAD is the best for leakage rates of 1 L/min, 3 L/min, 5 L/min, and 0 L/min, with validation set R2 of 0.832, 0.760, 0.928, and 0.773, which are 11.528, 14.2, 17.048, and 37.3% higher than the raw spectra, respectively. This method can be used to estimate the chlorophyll content of winter wheat leaves under CO2 trace-leakage stress and to dynamically monitor CO2 trace-leakage stress in crops.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference49 articles.

1. Exploring Spatial Characteristics of City-Level CO2 Emissions in China and Their Influencing Factors from Global and Local Perspectives;Liu;Sci. Total Environ.,2021

2. Carbon Emissions and Driving Forces of China’s Power Sector: Input-Output Model Based on the Disaggregated Power Sector;Luo;J. Clean. Prod.,2020

3. Drivers of Global Carbon Emissions 1990–2014;Duan;J. Clean. Prod.,2022

4. Metz, B., Davidson, O., de Coninck, H., Loos, M., and Meyer, L. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press.

5. A Guide for Assessing the Potential Impacts on Ecosystems of Leakage from CO2 Storage Sites;Pearce;Energy Procedia,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3