Low Energy Consumption Compressed Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Radio Network

Author:

Fang Yuan,Li LixiangORCID,Li Yixiao,Peng Haipeng,Yang Yixian

Abstract

For wireless communication networks, cognitive radio (CR) can be used to obtain the available spectrum, and wideband compressed sensing plays a vital role in cognitive radio networks (CRNs). Using compressed sensing (CS), sampling and compression of the spectrum signal can be simultaneously achieved, and the original signal can be accurately recovered from the sampling data under sub-Nyquist rate. Using a set of wideband random filters to measure the channel energy, only the recovery of the channel energy is necessary, rather than that of all the original channel signals. Based on the semi-tensor product, this paper proposes a new model to achieve the energy compression and reconstruction of spectral signals, called semi-tensor product compressed spectrum sensing (STP-CSS), which is a generalization of traditional spectrum sensing. The experimental results show that STP-CSS can flexibly generate a low-dimensional sensing matrix for energy compression and parallel reconstruction of the signal. Compared with the existing methods, STP-CSS is proved to effectively reduce the calculation complexity of sensor nodes. Hence, the proposed model markedly improves the spectrum sensing speed of network nodes and saves storage space and energy consumption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved energy efficiency using adaptive ant colony distributed intelligent based clustering in wireless sensor networks;Scientific Reports;2024-02-22

2. A GAME THEORETIC COGNITIVE SPECTRUM SENSING SCHEME FOR IoT NETWORKS;Telecommunications and Radio Engineering;2024

3. A Fast Spectral Analysis Method Based on Sparse Signals in Frequency Domain;2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI);2023-08-09

4. Design of Clustering Techniques in Cognitive Radio Sensor Networks;Computer Systems Science and Engineering;2023

5. Analysis of Spectrum Sensing Techniques in Cognitive Radio;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3