Developing a Mobile Mapping System for 3D GIS and Smart City Planning

Author:

Yang Byungyun

Abstract

The creation of augmented reality-related geographic information system (GIS) mapping applications has witnessed considerable advances in the technology of urban modeling; however, there are limitations to the technology that is currently used to create similar resources. The cost of the creation of the vehicle is an obstacle, and the rendering of textures of buildings is often lacking because of the distortion caused by the types of lenses that have been used. Generally, mobile mapping systems (MMSs) can extract detailed three-dimensional (3D) data with high quality texture information of the 3D building model. However, mapping urban areas by MMSs is expensive and requires advanced mathematical approaches with complicated steps. In particular, commercial MMS, which generally includes two GPS receivers, is an expensive device, costing ~$1 million. Thus, this research is aimed at developing a new MMS that semi-automatically produces high-quality texture information of 3D building models proposes a 3D urban model by hybrid approaches. Eventually, this study can support urban planners and people to improve their spatial perception and awareness of urban area for Smart City Planning.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference48 articles.

1. GIS based 3-D landscape visualization for promoting citizen's awareness of coastal hazard scenarios in flood prone tourism towns

2. Improving accuracy of automated 3-D building models for smart cities

3. Automatic Extraction of Man-Made Objects from Aerial and Space Images (II);Grün,1997

4. Automatic Extraction of Man-Made Object from Aerial and Space Images;Grün,1995

5. 3D Topological modeling and visualisation for 3D GIS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3