Understanding Contrail Business Processes through Hierarchical Clustering: A Multi-Stage Framework

Author:

Tariq Zeeshan,Khan NaveedORCID,Charles Darryl,McClean Sally,McChesney IanORCID,Taylor PaulORCID

Abstract

Real-world business processes are dynamic, with event logs that are generally unstructured and contain heterogeneous business classes. Process mining techniques derive useful knowledge from such logs but translating them into simplified and logical segments is crucial. Complexity is increased when dealing with business processes with a large number of events with no outcome labels. Techniques such as trace clustering and event clustering, tend to simplify the complex business logs but the resulting clusters are generally not understandable to the business users as the business aspects of the process are not considered while clustering the process log. In this paper, we provided a multi-stage hierarchical framework for business-logic driven clustering of highly variable process logs with extensively large number of events. Firstly, we introduced a term contrail processes for describing the characteristics of such complex real-world business processes and their logs presenting contrail-like models. Secondly, we proposed an algorithm Novel Hierarchical Clustering (NoHiC) to discover business-logic driven clusters from these contrail processes. For clustering, the raw event log is initially decomposed into high-level business classes, and later feature engineering is performed exclusively based on the business-context features, to support the discovery of meaningful business clusters. We used a hybrid approach which combines rule-based mining technique with a novel form of agglomerative hierarchical clustering for the experiments. A case-study of a CRM process of the UK’s renowned telecommunication firm is presented and the quality of the proposed framework is verified through several measures, such as cluster segregation, classification accuracy, and fitness of the log. We compared NoHiC technique with two trace clustering techniques using two real world process logs. The discovered clusters through NoHiC are found to have improved fitness as compared to the other techniques, and they also hold valuable information about the business context of the process log.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multilayered Framework for Process Mining in Industrial IoT Security;2023 IEEE Smart World Congress (SWC);2023-08-28

2. Time Efficient End-State Prediction Through Hybrid Trace Decomposition Using Process Mining;2022 14th International Conference on Computational Intelligence and Communication Networks (CICN);2022-12-04

3. Anomaly Detection for Service-Oriented Business Processes Using Conformance Analysis;Algorithms;2022-07-25

4. A Statistical Approach to Discovering Process Regime Shifts and Their Determinants;Algorithms;2022-04-13

5. Proactive business process mining for end-state prediction using trace features;2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI);2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3