Assessment of Subseasonal-to-Seasonal (S2S) Precipitation Forecast Skill for Reservoir Operation in the Yaque Del Norte River, Dominican Republic

Author:

Pelak Norman1ORCID,Shamir Eylon1ORCID,Hansen Theresa Modrick1,Cheng Zhengyang1ORCID

Affiliation:

1. Hydrologic Research Center, San Diego, CA 92127, USA

Abstract

Operational forecasters desire information about how their reservoir and riverine systems will evolve over monthly to seasonal timescales. Seasonal traces of hydrometeorological variables at a daily or sub-daily resolution are needed to drive hydrological models at this timescale. Operationally available models such as the Climate Forecast System (CFS) provide seasonal precipitation forecasts, but their coarse spatial scale requires further processing for use in local or regional hydrologic models. We focus on three methods to generate such forecasts: (1) a bias-adjustment method, in which the CFS forecasts are bias-corrected by ground-based observations; (2) a weather generator (WG) method, in which historical precipitation data, conditioned on an index of the El Niño–Southern Oscillation, are used to generate synthetic daily precipitation time series; and (3) a historical analog method, in which the CFS forecasts are used to condition the selection of historical satellite-based mean areal precipitation (MAP) traces. The Yaque del Norte River basin in the Dominican Republic is presented herein as a case study, using an independent dataset of rainfall and reservoir inflows to assess the relative performance of the methods. The methods showed seasonal variations in skill, with the MAP historical analog method having the strongest overall performance, but the CFS and WG methods also exhibited strong performance during certain seasons. These results indicate that the strengths of each method may be combined to produce an ensemble forecast product.

Funder

Capacity Development for Weather, Water, and Climate Forecasting and Disaster Risk Reduction U.S. NWS Grant to the Hydrologic Research Center

MDPI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3